

High frequency Nano-Optomechanical disk resonators in liquids

Erice, 3th August 2016

MPQ-Université Paris Diderot-CNRS:

Eduardo Gil-Santos, Christophe Baker, William Hease, Giuseppe Leo, Sara Ducci, Ivan Favero

LPN-Marcoussis-CNRS: Carmen Gomez, Aristide Lemaître

Overview

High frequency Nano-Optomechanical disk resonators in liquids

- Nanomechanical mass sensing
- Optomechanical systems
- Nano-Optomechanical disk resonators
- Optomechanical characterization in liquids
- Analytical and FEM modeling
- Experimental results: Stability and sensitivity
- Conclusions

Nanomechanical mass sensing

Mechanical frequency $\omega_m = \sqrt{(k/m)}$

Principle of detection: Mass depositions induce frequency shifts

$$\Delta \omega_0 \approx \frac{1}{2} \,\omega_0 \,\frac{\Delta m}{m}$$

Nanomechanical mass spectrometry

Single atom detection and identification

Nanomechanical mass sensing

Nanomechanical mass sensing in liquids

Microchannels

Microcapillars

Contour modes

100 µm EHT = 2.8 kV Signal A = SE2 WD = 7 mm Photo No. = 6248

Higher order modes

Self-oscillation

Nanomechanical mass sensing in liquids

Nano-optomechanical disk resonators

- In plane modes → Low dissipation?
- Strong optomechanical coupling High displacement sensitivity
- Lower dimensions → Multiple detection in a single chip
- Higher frequencies: GHz range \longrightarrow Ultrafast detection

J. Tamayo « Mass sensing: Optomechanics to the rescue » Nature Nanotechnology 10, 738–739 (2015)

Optomechanical systems

I. Favero, K. Karrai, Nature Photonics 3, 201 (2009) M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, RMP 86, 1391 (2014)

Nano-Optomechanical disk resonators

L. Ding, C. Baker et al. PRL, 105(26), 263903 (2010)

L. Ding, et al. APL98, 113108 (2011)

Optically

- . Small mode volume (sub-micron³)
- . High optical Q_{opt} over 10^5

Mechanically

- . High frequency Ω_m (GHz)
- . Small mass (pg)
- . Low mechanical dissipation $\Gamma_{\rm m}$

Mechanical mode

 $S_d = 10^{-17} \text{ m/Hz}^{-1/2}$

On-chip GaAs optomechanical disks fabrication

- 1. Multilayer wafer grown by MBE: GaAs substrate, 1.8 μm AlGaAs layer and GaAs top layer 320 nm.
- 2. Resist deposition.
- 3. Electron Beam Lithography.
- 4. Dry etching (ICP-RIE).
- 5. HF etching.
- 6. Resist removal.

Optomechanical characterization in liquids

High optomechanical sensitivity allows resolving the disk Brownian motion in a liquid

E. Gil-Santos et al. Nature Nanotechnology 10, 810–816 (2015)

Q_m=11 in a viscous liquid (perfluorinated liquid) 10

Optomechanical characterization in liquids

Optics

Mechanics

n=n(T)

The temperature in the disk increases from 20 to 70 degrees celsius while measuring

We extrapolate the measured values to extract the mechanical frequencies and quality factors at room temperature

Dispersive and dissipative interaction in various liquids

	ρ (kg/m³)	μ (Pa s)	c(m/s)
Water	1000	0.001	1500
HT 170	1782	0.0035	669
HT 230	1831	0.009	702
HT 270	1859	0.030	683

Viscous and acoustic interactions: a novel analytical approach

Based on the force experienced by a sphere vibrating in a viscoelastic fluid, for which an analytical expression was derived (Oestreicher 1951)

No fitting parameters

Only depending on:

- The mechanical properties of the disks
- Their dimentions
- The properties of the fluid

Viscous regime

Acoustic regime

$$Q_{viscous} = \frac{\rho \cdot \omega \cdot t \cdot R}{8.36\mu_f + (3.18 \cdot t + R)\sqrt{2\rho_f \omega \mu_f}}$$

$$(\frac{\Delta f}{f})_{viscous} = -\frac{1.27 \cdot t}{2R} \frac{\rho_f}{\rho} - \frac{3.18/R + 1/t}{2\rho} \sqrt{2\rho_f \mu_f / \omega}$$

$$Q_{acoustic}^{-1} = f(\frac{t}{R}, \frac{\rho_f}{\rho}, \frac{c_s}{c_f}, \nu)$$

$$(\frac{\Delta f}{f})_{acoustic} = g(\frac{t}{R}, \frac{\rho_f}{\rho}, \frac{c}{c_f}, \nu)$$

Contributions analyzed numerically E. Gil-Santos et al. Nature Nanotechnology 10, 810–816 (2015)

Viscous interactions: analytics and numerics

Viscous interactions: analytics and numerics

Acoustic interactions: analytics and numerics

Acoustic interactions: analytics and numerics

Comparing experiments and models: sensing perspectives

- Q_m>30 in water
- Highest Q×f /m reported in liquids
- Sensitive and ultrafast sensors

E. Gil-Santos et al. Nature Nanotechnology 10, 810–816 (2015)

Comparing experiments and models: sensing perspectives

- Q_m>30 in water
- Highest Q×f /m reported in liquids
- Sensitive and ultrafast sensors

E. Gil-Santos et al. Nature Nanotechnology 10, 810–816 (2015)

Stability in liquids: monitoring thermomechanical noise

- **10**⁻²⁴ **g**/ \sqrt{Hz} potential sensitivity in **mass** deposition
- **10⁻¹⁰** precision in **density** and **viscosity** measurement (1s acquisition time)

Conclusions

- Strong coupling of optics and mechanics
- Motional sensitivity reaches 10^{-17} m/ \sqrt{Hz} in liquid at the GHz
- Develop and validate a novel analytical model
- Controlled dissipation (Q>30 in water)
- 10⁻²⁴ g/ \sqrt{Hz} potential sensitivity in mass deposition
- 10⁻¹⁰ precision in density and viscosity measurements

Future work

- Biological sensing
- UltraFast rheometer and densitometer
- High frequency hydrodynamics in liquids/polimers

On-chip GaAs optomechanical disk resonators

C. Baker et al. Applied Physics Letters 99, 151117 (2011)

FEM modeling of liquid interactions

Viscous interactions

Acoustic interactions

