Ponderomotive squeezing of light: overcoming the Standard Quantum Limit in the detection band of interferometric gravitational wave detectors

Overview

Squeezed states of light

- Quantization of the EM field;
- Graphical representation;

Squeezed light in interferometric GW detectors

- Motivation & concept;
- GW effect on a coherent state;

- Squeezed vs. Coherent states;
- Historical point of view;

AdVirgo & ET LF sensitivity curves; - GW effect on a phase-squeezed state;

- Frequency-dependent squeezing;
- Experimental sensitivity enhancement;

Squeezed light: OPO-based & Ponderomotive

- OPO vs. Ponderomotive;
- OPO-based squeezing;
- Ponderomotive squeezing;

The POLIS experiment

- **Po**nderomotive **Li**ght **S**queezer;
- Optical parameters;
- Setup sketch;
- Homodyne detection;
- The suspended double-bench;

- Suspended mini payloads; _
- Suspension thermal noise; -
- Mirror coating thermal noise; _
- Interferometer equivalent noise;

Conclusions

Squeezed states of light

Electric field **E** in the position **r** at time **t**:

$$\vec{E}(\vec{r},t) = E_0[a(\vec{r})e^{-i\omega t} - a(\vec{r})^*e^{i\omega t}]\vec{p}(\vec{r})$$

Complex amplitude **a**
(function of phase ϕ):
 $a(\vec{r}) = a_0(\vec{r})e^{-i\phi(\vec{r})}$
 $\vec{E}(\vec{r},t) = E_0[X_1\cos(\omega t) - X_2\sin(\omega t)]\vec{p}(\vec{r})$
 $\vec{E}(\vec{r},t) = k^-(\vec{r}) = i[a^*(\vec{r}) - a(\vec{r})]$ Phase quadrature
 $X_1(\vec{r}) = X^+(\vec{r}) = a^*(\vec{r}) + a(\vec{r})$ Amplitude quadrature
Quantization of the EM Field :
 $\hat{X}^+ = \frac{1}{2i}(\hat{a}^+ + \hat{a})$ $\hat{X}^- = \frac{1}{2i}(\hat{a} - \hat{a}^+)$
 $(\Delta \hat{X}^+)^2 \rangle \langle (\Delta \hat{X}^-)^2 \rangle \ge \frac{1}{16}$

Squeezed state of light Quantization of the EM field

Coherent states can be written in terms of the eigenstate of the annihilation operator $\hat{a}: \hat{a}|\alpha\rangle = \alpha|\alpha\rangle$ and of number states $|n\rangle$ $\rightarrow \hat{E}$ has a sinusoidally oscillating

Squeezed state of light Quantization of the EM field

A squeezed state is generated by the squeezing operator \hat{S} :

 $\hat{S}(\xi) = \exp\left(\frac{1}{2}(\xi^*\hat{a}\hat{a} - \xi\hat{a}^{\dagger}\hat{a}^{\dagger})\right); \quad \xi = re^{i\phi} \quad \substack{0 \le r \le \infty \text{ squeezing parameter}\\0 \le \phi \le 2\pi \text{ quadrature angle}}$

When \hat{S} acts on a state $|\varphi\rangle$ we obtain the squeezed state:

$$\left|s
ight
angle=\hat{S}\left|\psi
ight
angle$$

taking $\varphi = 0$ and calculating the variances of \hat{X}^+, \hat{X}^- we find:

$$\Delta^2 \hat{X}_1 = e^{-2r}$$
 \longleftarrow squeezed

$$\Delta^2 \hat{X}_2 = e^{2r}$$
 \leftarrow anti-squeezed

A rotation by π gives the opposite condition: \hat{X}^- squeezed and \hat{X}^+ anti-squeezed.

Finally, the displacement operator \widehat{D} generates the displacement in the phase-amplitude plan: $|\alpha, \xi\rangle = \widehat{D}(\alpha)\widehat{S}(\xi) |0\rangle$

Squeezed state of light squeezed vs coherent states

Using light as probe (e.g. interferometer)

Minimal uncertainty shows up in a coherent state as the **Standard Quantum Limit (SQL**):

In this case uncorrelated **Shot noise** and **radiation pressure**-induced fluctuations (due to the *Poissonian* distribution of photons in a light beam) introduce an intrinsic limitation on the accuracy in the position measurement of a free mass using coherent light.

Squeezed state of light squeezed vs coherent states

Using light as probe (e.g. interferometer)

A bright laser beam (α >0) has the same fluctuation of the vacuum state

Its intrinsic quantum fluctuations determines the detector sensitivity

We can't violate the Heisenberg uncertainty but...

We can squeeze the uncertainty on one quadrature
 and use that quadrature as sensing element
 overcoming the standard quantum limit of coherent light!
squeezed states ↔ correlation between two quadratures
 (i.e. phase and amplitude)

Squeezed state of light historical point of view

Schrödinger Vs. Heisenberg

GEO60

Non-linear Crystals

Concept and first theory of coherent states and minimum uncertainty; **1970**

- Re-discovery of definition of squeezed states: increasing interest for their applications to optical communications and sensor noise reduction and for the theory of Standard Quantum Limit;
- From 80s the experimental generation of squeezed states begins using non-linear crystals at high frequencies; application to GWD is proposed..
- Low frequency squeezed light generation begins with OPOs;
- Effective application to Gravitational Wave Detectors to overcome the Standard Quantum Limit (GEO600, LIGO, Advanced Virgo+);
- Experimental studies on the *ponderomotive technique* to generate squeezed light and on *optical springs*.

Squeezed light in Interferometric Gravitational Wave detectors

Squeezed light in IGWDs Advanced Virgo* sensitivity curve

Squeezed light in IGWDs Einstein Telescope* LF sensitivity curve

L. Naticchioni - iQUOEMS conference - International School of Statistical Physics @ Erice - 2016/08/1st-5th

Squeezed light in IGWDs motivation & concept

Motivation: push the sensitivity of GWID below the SQL (radiation pressure + shot noise); reduction of the LF radiation pressure increase due to the higher circulating power in the GW interferometer's cavities. **Concept:** generation and injection of squeezed fields into the dark port of the GW interferometers \rightarrow Quantum entanglement \rightarrow SNR reduction

L. Naticchioni - iQUOEMS conference – International School of Statistical Physics @ Erice - 2016/08/1st-5th

Squeezed light in IGWDs motivation & concept

Motivation: push the sensitivity of GWID below the SQL (radiation pressure + shot noise); reduction of the LF radiation pressure increase due to the higher circulating power in the GW interferometer's cavities. **Concept:** generation and injection of squeezed fields into the dark port of the GW interferometers \rightarrow Quantum entanglement \rightarrow SNR reduction

L. Naticchioni - iQUOEMS conference – International School of Statistical Physics @ Erice - 2016/08/1st-5th

Squeezed light in IGWDs GW effect on a coherent state

Squeezed light in IGWDs GW effect on a coherent state

Squeezed light in IGWDs GW effect on a phase-squeezed state

GOOD for HIGH FREQUENCY sensitivity but BAD for LOW FREQUENCY somehow equivalent to radiation power increase. Pure phase squeezing is not enough to beat the SQL in the GWID detection bandwidth!

 \rightarrow <u>frequency-dependent with squeeze angle is a better choice</u>

Squeezed light in IGWDs Frequency-dependent squeezing

IGW detectors require a frequency-dependent squeezing quadrature: squeezing angle $\theta_s = \theta_s(\Omega)$, with Ω = detection frequency

Squeezed light in IGWDs Frequency-dependent squeezing

Improvement of sensitivity on Michelson Interferometer injecting 20dB squeezed vacuum field

Squeezed light in IGWDs Experimental sensitivity enhancement

broadband noise reduction of up to 3.5 *dB* in the shotnoise-limited frequency band *LSC, Nature Phisics 7.12* (2011), pp. 962-965

up to 2.15 *dB* in the shot-noiselimited frequency band *J. Aasi et al., Nature Photonics* 7.8 (2013), pp. 613-619

Squeezed light production: **OPO-based** and ponderomotive techniques

Squeezed light production OPO vs ponderomotive

Non-linear processes in dielectric medium

- Kerr medium
- Optical Parameter Oscillator (**OPO**)

3rd and **2nd** susceptibilities induces *correlations* between *phase* and *amplitude* fluctuations

Empty cavity with suspended mirrors (ponderomotive)

Radiation pressure on the suspended mirror induces a *coupling* between its *position* and the *intensity of light beam* → *correlation* between *phase* and *amplitude* quadrature of the output state

Squeezed light production OPO-based squeezing

historical point of view

Year	Group	Mag.	Freq.	Cavity	λ [nm]	Material
1986	Wu et al. [90]	$3\mathrm{dB}$	$1.8\mathrm{MHz}$	Linear	532 & 1064	MgO:LN
1992	Polzik et al. [91]	$6.0\mathrm{dB}$	$1.4\mathrm{MHz}$	Bow-Tie	856	KNB
1992	Ou et al. [92]	$3.6\mathrm{dB}$	$1.1\mathrm{MHz}$	Bow-Tie	540 & 1080	KTP
1996	Schneider et al. [93]	$4.3\mathrm{dB}$	$5\mathrm{MHz}$	Hemilithic	1064	MgO:LN
1998	Schneider et al. [94]	$6.5\mathrm{dB}$	$6.5\mathrm{MHz}$	Hemilithic	1064	MgO:LN
1999	Lam <i>et al.</i> [95]	$7.1\mathrm{dB}$	$3\mathrm{MHz}$	Monolithic	1064	MgO:LN
2002	Bowen $et al.$ [62]	$2.5\mathrm{dB}$	$220\mathrm{kHz}$	Hemilithic	1064	MgO:LN
2004	McKenzie et al. [63]	$2.0\mathrm{dB}$	$500\mathrm{Hz}$	Hemilithic	1064	MgO:LN
2006	Suzuki et al. [96]	$7\mathrm{dB}$	$1\mathrm{MHz}$	Bow-Tie	860	PPKTP
2007	Takeno et al. [97]	$9\mathrm{dB}$	$1\mathrm{MHz}$	Bow-Tie	860	PPKTP
2007	Goda <i>et al.</i> [60]	$7.4\mathrm{dB}$	$2\mathrm{kHz}$	Linear	1064	PPKTP
2007	Vahlbruch et al. [98]	$10\mathrm{dB}$	$5\mathrm{MHz}$	Monolithic	1064	MgO:LN
2010	Mehmet et al. [99]	$11.5\mathrm{dB}$	$5\mathrm{MHz}$	Monolithic	1064	MgO:LN
2010	Eberle $et al.$ [86]	$12.7\mathrm{dB}$	$5\mathrm{MHz}$	Monolithic	1064	PPKTP
2011	Khalaidovski et al. [100]	$9.5\mathrm{dB}$	$3\mathrm{kHz}$	Hemilithic	1064	PPKTP
2011	Mehmet $et al.$ [101]	$12\mathrm{dB}$	$60\mathrm{kHz}$	Hemilithic	1550	PPKTP
2011	Chua <i>et al.</i> [102]	$8.6\mathrm{dB}$	$10\mathrm{Hz}$	Bow-Tie	1064 & 532	PPKTP
2012	Stefszky et al. [87]	$10\mathrm{dB}$	$10\mathrm{Hz}$ V	Bow-Tie	$1064 \ \& \ 532$	PPKTP

6 dB ~ factor 2

from M.S. Stefszky, PhD thesis, 2012

Squeezed light production OPO-based squeezing

L. Naticchioni - iQUOEMS conference - International School of Statistical Physics @ Erice - 2016/08/1st-5th

Squeezed light production OPO-based squeezing

integration with IGWDs

Squeezed light production OPO-based squeezing

PROS:

- Long experience over two decades;
- Already integrated in IGWDs like GEO600 and LIGO, demonstrated the sensitivity improvement;
- Integration in micro-opto-electro-mechanical systems (MOEMS) for communication and integrated sensors on chip devices (but yet *expensive*);

CONS:

- Frequency limitation due to losses mechanisms in the medium (e.g. phototermal fluctuations);
- Stability issue, especially in the low frequency band (where we expect many interesting GW signals).

Squeezed light production Ponderomotive squeezing

Rising interest in the ponderomotive technique:

- Application to MOEMS: cheaper than OPO integration, better integration factor;
- Study of coupling between macroscopic opto-mechanic objects and their quantum behavior (theoretical and practical interest);
- Application to IGWD: low frequency performances and stability.

Radiation pressure on the suspended mirror induces a *coupling* between its *position* and the *intensity of light beam* → *correlation* between *phase* and *amplitude* quadrature of the output state

Squeezed light production Ponderomotive squeezing

So far realized only in micro-opto-mechanical systems (MOMS):

Squeezed light production Ponderomotive squeezing

First proposal of a suspended *macroscopic* interferometer as frequency-independent squeezer below 1kHz:

Corbitt et al., Phys. Rev. A 73, 2006

L. Naticchioni - iQUOEMS conference – International School of Statistical Physics @ Erice - 2016/08/1st-5th

Target: 5dB

Squeezed light production Ponderomotive squeezing

PROS:

- Large squeezing values without using high laser powers and/or very high cavity finesse
- Feasible integration in IGWD
- Stability at low frequencies: good for IGWD

CONS:

- Suspension of very small mirrors in order to observe the RP
- High suppression of **seismic** and **thermo-elastic** noises

Robust seismic filter:

e.g. the multistage **Superattenuator** of Virgo **Monolithic suspension**: e.g. the SiO₂ fibers in Virgo and LIGO

Squeezed light production Ponderomotive squeezing

Robust seismic filter: Superattenuator of Virgo* inverted pendulum + a chain of pendula, passive+active damping. Provides a seismic attenuation of -180*dB* at 10Hz

Monolithic suspension*:

SiO2 fibers welded to mirrors as in Virgo and LIGO: low thermoelastic losses respect to metallic wires

*see F. Travasso's talk

Frequency independent with **optical spring** Optical Spring **modification of the cavity dynamics**

If the pendulum frequency can be neglected ($\Omega p \ll \Omega$, $|\Theta|$)

the mechanical resonance of the mirror is completely given by the optical spring characteristic frequency $\pm \Theta$

Squeezed light production Ponderomotive squeezing

Opto-mechanical parameters

$$\xi_{min}(\Omega << |\Theta|) = \frac{|\bar{\delta}_{\gamma}|}{1 + \sqrt{1 + \bar{\delta}_{\gamma}^2}}$$

$$\Theta^2 \equiv \frac{K_{opt}}{M} = -\frac{4\omega_0 \bar{I}_0 \bar{\delta}_\gamma}{Mc^2} \left(\frac{2\mathcal{F}}{\pi} \frac{1}{1+\bar{\delta}_\gamma^2}\right)^2$$

Fixed the ξ and Θ

key parameters are: Input power, Cavity Finesse, Cavity detuning, Suspended mirrors mass

Parameters value optimization

to have

A large enough squeezing factor and an useful frequency band

from M. De Laurentis @SIGRAV, 2014

The POLIS experiment

The POLIS experiment POnderomotive LIght Squeezer

we are currently setting up an OPO-based squeezer for Advanced Virgo similar to that of GEO600...

but meanwhile we are also exploring the ponderomotive technique:

The study and construction of the suspended interferometer **POLIS** was founded by a PRIN project (PPPS), involving the collaboration of many institutions:

Università di Roma Sapienza & INFN-Roma, Università di Napoli Federico II & INFN-Napoli, Università di Roma Tor Vergata & INFN-Roma2, Università di Pisa & INFN-Pisa, INFN-Genova, INFN-Perugia, Università del Sannio, Università di Firenze & INFN-Firenze, Università di Salerno, Università di Trento & INFN-Padova-Trento & Fondazione B.Kessler, Università di Camerino, Università di Urbino, CNR

The POLIS experiment Optical Parameters

cavity Finesse

enters directly in the reachable squeezing coupling with the cavity losses

Large values

- · Large Optical spring frequency;
- Reduce effective intracavity losses;

losses of 10 ppm, if we impose that squeezing not degraded by more than 60%

(to reach the anyway remarkable experimental value of 12 dB of squeezing)

from M. De Laurentis @SIGRAV, 2014

L. Naticchioni - iQUOEMS conference – International School of Statistical Physics @ Erice - 2016/08/1st-5th

Low values

Reduce optical spring instability; Higher circulating power could damage mirrors

The POLIS experiment Optical Parameters

Input power

Large value

Large Optical spring frequency

Low values

- Use of available lasers;
- No problem with mirrors damage threshold

Fixed the detuning, the finesse and the desired optical spring stiffness, we can derive the value for the input power. With high finesse we can relax the input power

P=2.5 W

N.B.: The most important constraint on the power circulating in the cavity: for powers higher than 0.2 MW the thermal effects start to degrade the behavior of the cavity, For beam waist of mm size, so a circulating power of 0.1 MW will be our conservative constraint.

from M. De Laurentis @SIGRAV, 2014

The POLIS experiment Optical Parameters

Suspended mirror mass

High values:

- easy to suspend
- easy to sense and actuate (feedback control)

Low values:

- Large optical spring resonance (frequency-independent band)
- commercial sizes available

We choose a relatively high mass value since we can take advantage of a significant seismic attenuation, suspending our interferometer from the Virgo **SAFE Superattenuator**

A standard 25.4 mm mirror in fused silica with a 6.35 mm thickness has a mass of about 7.8 g, while with a 10 mm of thickness it can reach a mass of 11.1 g.

Can be suspended with a monolithic Virgo-like technique

Higher mass value relaxes the sensitivity requirements

The POLIS experiment Optical Parameters

Cavity parameters

	# •		
	Constrain for the cavity length: internale SAFE dia	ameter	L = 440 mm
	Negative stability factor in the cavities with low su masses reduce the angular instability	uspended	gi = −0.76
	Available Radii of Rurvature of the commercial substrates	Ro	C = RoCE = 250 mm
	This value of the RoC assures the maximum spot mirrors with the available comm (large w => reduce thermal deformation of	t size on the nercial radii the coating)	wi = 0.447 mm
	N.B.: Other commercial values: RoCI = RoCE = 300 mm RoC = 200 mm	n → are wi = 0.3 → unstable c	383 mm avity
		Gouy phase	= 2.43 rad = 0.773493π
fron	well stable cavity, avoiding th or imperfections, mis-match problems and th n M. De Laurentis @SIGRAV, 2014	ne couplings ne higher orde	with thermal deformation er mode resonance

The POLIS experiment Setup sketch

The POLIS experiment Homodyne detector

Low-noise balanced homodyne detector electronics has been already designed and built by INFN-Roma for the *OPO-based squeezer* of Advanced Virgo. We can rely on the same electronics for the Homodyne block of **POLIS**.

L. Naticchioni - iQUOEMS conference - International School of Statistical Physics @ Erice - 2016/08/1st-5th

The POLIS experiment Homodyne detector

Low-noise balanced homodyne detector electronics has been already designed and built by INFN-Roma for the *OPO-based squeezer* of Advanced Virgo. We can rely on the same electronics for the Homodyne block of **POLIS**.

The POLIS experiment The suspended double-bench

Motivation for a suspended squeezer bench:

Taking advantage of the seismic isolation given by the suspension of SAFE (Super Attenuator Facility at EGO), reaching an higher sensitivity in the low frequency band.

End mirrors of the cavities can have relatively higher masses compared to that of other ponderomotive squeezing experiments.

Advantages:

- easier construction & assembly (e.g. Virgo-like monolithic suspension);
- easier sensing & position control;
- lower thermal noise;
- commercial size mirrors can be used (e.g. 1", 10 g)

The POLIS experiment The suspended double-bench

Requirements: must be compliant with the allowed size and weight in order to be suspended at the SAFE (Super Attenuator Facility at EGO):

Height: 800 mm Diameter: 960 mm (allowing two cavities 440mm-long) Weight: ~ 150 kg

Material: anticorodal (Al-alloy)

Upper plate

(auxiliary bench)

Cylindrical baffles

Main optical bench

The structure must combine <u>high stiffness</u> (to push up the mechanical mode frequencies) and <u>low mass</u> (< SA limit).

The POLIS experiment The suspended double-bench

The POLIS experiment The suspended double-bench

The POLIS experiment The suspended double-bench

The POLIS experiment The suspended double-bench

The definitive design of the lower bench will be based on the octagon shape like AdV injection

AdV suspended injection bench

The POLIS experiment Suspended mini-payloads

Requirements: the fundamental constraint is that the suspension thermal noise of the lighter (end) mirror must be below $10^{-16} m/\sqrt{Hz}$ at 10 Hz; if not squeezing would be not observable.

The POLIS experiment Suspended mini-payloads

Input Payload vibration modes

The POLIS experiment Suspended mini-payloads

Input Payload vibration modes

The POLIS experiment Suspended mini-payloads

Input Payload vibration modes

The POLIS experiment Suspended mini-payloads

The POLIS experiment Suspended mini-payloads

End Payload vibration modes

The POLIS experiment Suspended mini-payloads

End Payload vibration modes

The POLIS experiment Suspended mini-payloads

End Payload vibration modes

The POLIS experiment Suspended mini-payloads

End Payload violin modes

The POLIS experiment Suspended mini-payloads

Summary of the mechanical resonances

	INPUT	END
Mode	frequency (Hz)	frequency (Hz)
Theta y (MA)	5.7×10^{-2}	$6.9 imes 10^{-2}$
Theta z (MA)	$8 imes 10^{-2}$	$40 imes 10^{-2}$
Theta x (MA)	0.14	0.49
Theta x (MI)	0.14	1.94
Pendulum z (MI)	0.71	0.77
Pendulum x (MI)	0.71	0.77
Pendulum x (MA)	1.15	0.93
Pendulum z (MA)	1.15	0.93
Theta y (MI)	1.57	1.55
Y (MA)	16.3	31.7
Y (MI)	52.1	39.7
Theta z (MI)	73.6	62.7
First violin (MI)	124.6	143.6
Second violin (MI)	249.4	287.1

The POLIS experiment Suspension thermal noise

From the Fluctuation-Dissipation Theorem:

$$S_X^{FDT}(\omega) = \frac{4k_b T}{m\omega} \frac{\omega_0^2 \phi(\omega)}{\left(\omega^2 - \omega_0^2\right)^2 + \left[\omega_0^2 \phi(\omega)\right]^2}$$

The overall Φ is given mainly by the Thermoelastic and Surface loss angles:

$\phi - \Lambda \qquad \omega \tau$	$(1 + od_s)$	suspension wires:		
$\varphi_{te} = \Delta \overline{\frac{1+(\omega\tau)^2}{1+(\omega\tau)^2}}$; $\varphi_s = \varphi_{bulk}(1+8\overline{d})$		Marionette	e Mirror	
	Parameter	C85 steel	Fused silica	
where:	density $\rho [\text{kg/m}^3]$	$7.9 imes 10^3$	2.2×10^3	
	specific heat $c [J/K/kg]$	502	772	
VT ($\sigma \rangle^2$	thermal conductivity $k [W/K/m]$	50	1.38	
$\Delta = \frac{1}{\alpha} \left(\alpha - \beta \frac{\delta}{\alpha} \right)^2$	thermal expansion coefficient α [1/K]	1.4×10^{-7}	$3.9 imes 10^{-7}$	
$c ho$ \langle $Y\pi$	temperature T [K]	294	294	
	young modulus Y [Pa]	2.1×10^{11}	$7.2 imes 10^{10}$	
$a a d^2$	fractional change of Y(T) β [1/K]	-	$1.52 imes 10^{-4}$	
$\tau = \frac{c\rho a}{c\rho a}$	wire radius r [m]	$1.5 imes 10^{-4}$	1.5×10^{-4} (Input)	
$2.16 \cdot 2\pi k$			2.5×10^{-5} (End)	
	$\varphi_{bulk,SiO_2} = 4 \times 10^{-10}$; $\varphi_{bulk,C85} = 10^{-4}$; $d_{s,SiO_2} = 1.5 \times 10^{-2}$			

The POLIS experiment Suspension thermal noise

Calculated for a double pendulum, considering the previous parameters, using a MatLab-based code

The POLIS experiment Mirror coating thermal noise

Calculated using the Levin approach*:

$$S_X^{Lev}(f) = \frac{4k_B T E_s \phi_{coat}}{\pi f F_0^2}$$

 E_s is the strain energy stored in the dissipation zone, calculated with a harmonic response FEM simulation (F_0 is the peak value of the applied force with intensity profile of a laser Gaussian beam)

L. Naticchioni - iQUOEMS conference - International School of Statistical Physics @ Erice - 2016/08/1st-5th

The POLIS experiment Interferometer equivalent noise

L. Naticchioni - iQUOEMS conference – International School of Statistical Physics @ Erice - 2016/08/1st-5th

- Squeezed states of light can be used to overcome the SQL;
- Squeezed light has already proved to enhance the sensitivity of a quantum-limited detector, like interferometric GW detectors;
- Phase-squeezing and frequency-dependent squeezing will be a standard choice for the next upgrades of the current GW interferometers and for third generation GW observatories;
- Ponderomotive squeezing is a promising alternative to OPO-based squeezers;
- Exploiting the seismic insulation provided by the Virgo SA we are setting up the ponderomotive squeezer POLIS, designed to work in the lowfrequency band (<1kHz);
- POLIS FEM studies and thermal noise evaluations have been shown;
- The mechanical parts of POLIS have been already assembled and are currently under test (local control and feedback actuation) in a dedicated facility. Next steps: monolithic suspension of the small cavity mirrors, installation of the optical elements and input laser, integration in the SAFE Superattenuator @ EGO-Virgo.

Thank you for your attention!
Ponderomotive squeezing of light: overcoming the SQL in the detection band of IGWDs

Thank you for your attention!

L. Naticchioni - iQUOEMS conference – International School of Statistical Physics @ Erice - 2016/08/1st-5th