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MOTIVATIONS

driving a quantum system  
and engineer its irreversible dynamics  
by a periodic driving 

example: the micromaser



OUTLINE 

• the setup: an optomechancal cavity pumped by a 
pulsed laser 

• the Langevin equation of motion 

• dynamics of the mean values 

• dynamics of the fluctuations 

• cooling, squeezing and entanglement

NB this is a report on preliminary results!



THE SETUP
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an optomechanical cavity pumped by a pulsed laser. 
both the cavity mode and the cavity mirror are  
dissipatively coupled to their respective environments 



THE HAMILTONIAN AND  
THE QUANTUM LANGEVIN EQUATIONS
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I. INTRODUCTION

Introduction

II. THE MODEL

We consider a Fabry-Perot cavity of length L with a movable mirror at one end. We assume that

a single optical mode is interacting with a single mechanical mode (i.e. the center-of-mass oscillation).

The mirror can thus be modeled as a mass m attached to a spring of characteristic frequency !M and

friction coe�cient �M , it is described by dimensionless position and momentum operators q̂ and p̂ which

obey the canonical commutation relation [q̂, p̂]=i. The optical mode has frequency !O and decay rate ,

it is described by annihilation and creation operators â and â†, respectively, which obey the canonical

commutation relation [â, â†]=1.

The cavity is driven by a sequence of external laser pulses characterized by a constant power P ,

frequency !L, duration ⌧p and interpulse delay ⌧np.

The Hamiltonian of the system describes two harmonic oscillators coupled via the radiation pressure

interaction.

Ĥp= ~!Oâ
†â+

~!M

2
(q̂2 + p̂2)� ~Gâ†âq̂ + i~E(e�i!Ltâ† � ei!Ltâ) (1)

Ĥnp= ~!Oâ
†â+

~!M

2
(q̂2 + p̂2)� ~Gâ†âq̂ (2)

The first term describes the energy of the cavity mode, the second term gives the energy of the me-

chanical mode, the third term is the radiation-pressure coupling of rate G=(!O/L)
p
~/(m!M). The last

term in (??) describes the laser input where E is related to the input laser power P by |E|=
p
2PL/(~!L)

Since !M is much smaller than c/2L scattering of photons from the driven mode into other cavity modes

is negligible and we can adopt a single cavity mode description.

It is convenient to change the description of the optical mode by switching to a frame rotating at

the laser frequency !L, applying the unitary transformation U=ei!Lââ
†t obtaining new hamiltonians

ĤI
(p,np) = UĤ(p,np)U

† + i~@U
@t

ĤI
p= ~�â†â+

~!M

2
(q̂2 + p̂2)� ~Gâ†âq̂ + i~E(â† � â) (3)

ĤI
np= ~�â†â+

~!M

2
(q̂2 + p̂2)� ~Gâ†âq̂ (4)

where � = !O � !L is the unperturbed cavity laser detuning.
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†â+
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~!M

2
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where � = !O � !L is the unperturbed cavity laser detuning.

2



THE DYNAMICS OF THE 
AVERAGE VALUES
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phase space dynamics of mirror average values  
as a function of time



THE FLUCTUATIONS
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ô=O+�olinearize the fluctuations around the average

since the mirror and field state is gaussian it is convenient  
to describe the fluctuation dynamics in term of the 
covariance matrix
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mirror cooling



MIRROR HEATING
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mirror squeezing
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mirror field  
entanglement
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