Integrated optomechanics and linear optics quantum circuits

Menno Poot Tang lab, Yale University Currently: TU Delft

Erice, Italy August 4, 2016

Outline

Opto- & electromechanics with the "H-resonator"

- Application: broadband phase shifting
- Optomechanics
 - Electrostatic spring effect and tunable nonlinearities
 - 15 dB of squeezing using Y-feedback
 - Towards the quantum regime

Linear optics quantum circuits

- Photons as qubits, circuits as operations
- Towards a fully scalable integrated CNOT gate
 - Directional couplers, SSPDs, phase determination

Outlook and conclusions

On-chip optomechanics at Yale

Large-amplitude motion and optomechanical memories

Bagheri, Poot *et al.*, Nature Nanotech. 2011 Poot, Bagheri *et al.*, Phys Rev. A. 2012

Synchronization between remote optomechanical oscillators

Fong, Poot, and Tang, Nano Lett., 2015

Opto-electromechanics

Optomechanics

- Very good sensitivity
 - Quantum-limited lasers
 - Low-noise detectors
- Photons interact only very weakly with the resonator
 - Momentum: $p = h/λ = 4.3 \times 10^{-28} \text{ kg m/s}$

Nanoelectromechanics

- Sensitivity "low" without special mesoscopic devices
- Strong electrostatic forces
 - Inversely proportional to the gap → make small

For a review of all the different optomechanical and NEMS devices that are used see e.g. "Mechanical Systems in the Quantum Regime" Phys. Rep. **511** 273–335 (2012)

Device design

- What we want:
 - Sensitive optical readout
 Use an on-chip Mach-Zehnder
 interferometer
 - Strong forces
 Electrostatic interactions between
 nearby electrodes
 - High quality factor mechanics
 Many oscillations before relaxing
- Make integrated photonic circuits out of high-stress SiN with metal electrodes
- Problem: metal absorbs light
 - Separate actuation and readout parts

"H-resonator"

Device design

- What we want:
 - Sensitive optical readout
 Use an on-chip Mach-Zehnder
 interferometer
 - Strong forces
 Electrostatic interactions between
 nearby electrodes
 - High quality factor mechanics
 Many oscillations before relaxing
- Make integrated photonic circuits out of high-stress SiN with metal electrodes
- Problem: metal absorbs light
 - Separate actuation and readout parts

Device design

- What we want:
 - Sensitive optical readout
 Use an on-chip Mach-Zehnder
 interferometer
 - Strong forces
 Electrostatic interactions between
 nearby electrodes
 - High quality factor mechanics
 Many oscillations before relaxing
- Make integrated photonic circuits out of high-stress SiN with metal electrodes
- Problem: metal absorbs light
 - Separate actuation and readout parts

Application: phase shifting

- Very important optical component:
 - Power modulators
 - Tunable filters
 - Quantum algorithms
- Phase acquired when light travels through a material: $\phi = 2\pi n L/\lambda_0$

Xu, Schmidth, Pradhan, and Lipson, Nature **435** 325 (2005) G. T. Reed *et al.*, Nat Phot, **4** 518 (2010) source: http://www2.physics.ox.ac.uk/

Ref. index n

The "H" optomechanical phase shifter

Voltage \rightarrow displacement \rightarrow refr. index \rightarrow phase

- Electrostatic: no power dissipated
 - ✓ No thermal crosstalk
 - ✓ Ideal for cryogenic operation
- Does not rely on a cavity works for a large wavelength range

- Small optical forces large power range possible: from single photon to Watt
- SiN = high-stress material = high eigenfrequency broadband operation

M. Poot and H. Tang, Appl. Phys. Lett. 104, 061101 (2014)

Opto-electromechanical phase shifting

- Measure transmission of the device: MZI fringes
- Apply voltage:
 Shift in the fringe position = phase shift

- Quadratic phase shift with V (electrostatic force ~ V²)
- π/2 phase shifts for the first generation of devices

Dynamic performance – frequency domain

- Operates up to a few MHz; 3 dB point at 1 MHz
- Peaks due to the mechanical modes
- Quality factor ~ 10 in air
- Quality factor up to 300 000 in vacuum

M. Poot and H. Tang, Appl. Phys. Lett. 104, 061101 (2014)

M. Poot et al., High-quality opto-electromechanical resonators, in preparation

Outline

Opto- & electromechanics with the "H-resonator"

- Application: broadband phase shifting
- Optomechanics
 - Electrostatic spring effect and tunable nonlinearities
 - 15 dB of squeezing using Y-feedback
 - Towards the quantum regime

Linear optics quantum circuits

- Photons as qubits, circuits as operations
- Towards a fully scalable integrated CNOT gate
 - Directional couplers, SSPDs, phase determination

Outlook and conclusions

Electromechanics with H-resonators

Electrostatic spring effect

An extremely strong electrostatic tuning of the resonance frequency is observed

Tunable nonlinearity

The Duffing parameter α is completely determined by the strong electrostatic effects CNT: Hüttel, Nano Lett. 2009, Häkkinen, Nano Lett. 2015

Optomechanics with H-resonators

- Small objects perform Brownian motion: Gaussian and equal quadratures
- Modulation of the resonance frequency f_0 at $2f_0$: $\chi = \partial f_0 / \partial V_{dc} \cdot V_P$
- Noise squeezed in the X quadrature limited to 3 dB

 $X = \langle x(t)\cos(\omega_F t) \rangle_{\omega_F}$

 $Y = \langle x(t) \sin(\omega_F t) \rangle_{\omega_F}$

M. Poot, K.Fong, and H.Tang, Phys.Rev. A 90 063809 (2014)

Optomechanics with H-resonators

- Parametric squeezing reduces noise in one quadrature (X) $\gamma_0 + \chi$ Limited to 3 dB due to instability in other quadrature (Y) $\gamma_0 - \chi + g$
- Feedback cooling can reduce thermal noise. Limited by SNR
- Use squeezing to reduce noise and feedback to prevent instabilities
- No longer fundamentally limited!

Optomechanics with H-resonators

- Parametric squeezing reduces noise in one quadrature (X, blue hues)
 Limited to 3 dB due to instability in other quadrature (Y, red hues)
- Feedback cooling can reduce thermal noise. Limited by SNR
- Use squeezing to reduce noise and feedback to prevent instabilities No longer fundamentally limited!
- 15 dB of squeezing achieved: far beyond the 3 dB limit and even surpasses the FB cooling limit

M. Poot, K.Y. Fong, and H.X. Tang, New J. Phys. 17 043056 (2015)

- So far these experiments were done with thermal motion
- How about the quantum regime?

Resonance frequency	Temperature	Thermal occupation	Required squeezing
500 kHz	300 K	1.3x10 ⁷	74 dB
1 GHz	4 K	83	22 dB
1 GHz	20 mK	0.1	0.8 dB

- Low temperature and high frequency are the way to go Need for faster electronics/alternative feedback schemes e.g. Poot et al., APL 99, 013113 (2011)
- What is actually limiting the squeezing?

Recent work on quantum squeezing using BAE: Wollman, Schwab *et al.*, Science, **349**, 952 (2015) Lecocq, Teufel *et al.*, PRX, **5**, 041037 (2015)

$$\bar{n} = \left\{ \exp\left(\frac{hf}{k_B T}\right) - 1 \right\}^{-1}$$
$$\frac{\langle u^2 \rangle}{u_{\rm zpm}^2} = 2\bar{n} + 1$$

- Calculate the amount of squeezing for nonideal parameters
- The maximum squeezing degrades when the not exactly on resonance → frequency drift
- Similar effect for finite phases θ , θ_{FB}

- What about the signal-to-background ratio (SBR)?
 - A weak measurement (C << C_{SQL}) gives a noisy signal
 - A strong measurement (C >> C_{SQL}) gives a clearer signal, but backaction heats the resonator
- For a quantum resonator the SBR is small near the SQL; for higher temperature SBR is larger

- Turn up the parametric pump (and stabilizing feedback) to increase squeezing
- 8 dB of quantum squeezing for $\chi = 10^3$
- How robust is it?
- Can one see it?

Outline

Opto- & electromechanics with the "H-resonator"

- Application: broadband phase shifting
- Optomechanics
 - Electrostatic spring effect and tunable nonlinearities
 - 15 dB of squeezing using Y-feedback
 - Towards the quantum regime

Linear optics quantum circuits

- Photons as qubits, circuits as operations
- Towards a fully scalable integrated CNOT gate
 - Directional couplers, SSPDs, phase determination

Outlook and conclusions

Linear optical quantum computation

- Optical photons are ideal qubits: they hardly interact with their environment
 - Easily transferred over large distances
 - Coherence is well preserved
- Problems:
 - Photons hardly interact with each other:
 Difficult to make 2 qubit gates
 Solution: measurement-induced nonlinearity (KLM scheme)
 - Not very scalable in free-space optics Measured in "number of optical tables" Use integrated optics:
 - Many small devices on a chip
 - Phase stability

http://www.wiretechworld.com/files/2015/07/Optical-Fibers.jpg http://www.fisi.polimi.it/sites/default/files/allegati/images/LabLaserA1.JPG

M. Poot et al, Integrated quantum optics circuits with superconducting detectors and optomechanical phase shifters, in preparation

Directional coupler

How large should the interaction length be for a given splitting ratio C?

Directional coupler

- Measure transmission for different interaction lengths L_{int}
- Fit: $C = \sin^2 \left(\frac{\pi}{2} \frac{L_{\text{int}} + \ell_0}{\ell_c} \right)$
- With ℓ_0 , ℓ_c determine L_{int} for new chip
- Very close to target values of 1/2 and 2/3

M. Poot et al., Op. Ex. 24 6843 (2016)

A more complex circuit: a CNOT gate

- Need to confirm that the network works as designed
- Classical scattering matrix determines the quantum behavior e.g. J. Skaar, J. C. Garcia Escartin, and H. Landro, Am. J. Phys, 2004
- How to find the scattering matrix?

A more complex circuit: a CNOT gate

- Need to confirm that the network works as designed
- Classical scattering matrix determines the quantum behavior e.g. J. Skaar, J. C. Garcia Escartin, and H. Landro, Am. J. Phys, 2004
- How to find the scattering matrix?

 Make identical CNOT devices with different combinations of input and outputs connected
 Example: input=1, output=4
 Transmission determines |S₄₁|²
 Do this for all 16 combinations

A more complex circuit: a CNOT gate

- Need to confirm that the network works as designed
- Classical scattering matrix determines the quantum behavior e.g. J. Skaar, J. C. Garcia Escartin, and H. Landro, Am. J. Phys, 2004
- How to find the scattering matrix?

 Make identical CNOT devices with different combinations of input and outputs connected
 Example: input=1, output=4
 Transmission determines |S₄₁|²
 Do this for all 16 combinations

Characterizing the CNOT

- Transmissions determined by the model of the CNOT gate
- From least-squares fit:
 C₅₀ = 0.477 and C₆₇ = 0.676
- Values close to ideal

Simulation: correct result 99.8% of the time → high fidelity operation

M. Poot et al., Op. Ex. 24 6843 (2016)

The full circuit – initialization and tomography

Need to prepare qubits in arbitrary state

 Use H-resonators as optomechanical phase shifters

M. Poot and H. Tang, Appl. Phys. Lett. 104, 061101 (2014)

Determining the phases

M. Poot et al, Characterization of optical quantum circuits using resonant phase shifts, submitted

Determining the phases

Superconducting single photon detectors

10

-5

Voltage (V)

1.6K

30 .. 70 nm wide ~ 5 nm thick NbTiN on top of a waveguide

> The SSPDs work OK after the entire fabrication process, including the release of the phase shifters

> > 4.00um

Gol'tsman *et al.*, APL 2001 Pernice *et al.*, Nat Comm. 2012 Schuck *et al.*, Sci Rep. 2013

Yale 15.0kV 15.5mm x12.0k SE(M)

0

Current (µA)

4

8

Conclusions and outlook

We demonstrate strong electrostatic interactions, and squeezing with feedback in Hresonators. These experiments can be extended to the quantum regime

Our "H" phase shifters are not only useful in optomechanics but are essential parts in integrated quantum optics

Integration of all elements - SSPDs, phase shifters and quantum circuitry - is underway and the next step is to send nonclassical light into these exciting devices

Photonic circuits for integrated quantum optics

8

Menno Poot Yale University Currently: TU Delft Yale Institute for Nanoscience and Quantum Engineering

Netherlands Organisation for Scientific Research

Erice, Italy August 4, 2016