Microwave Optomechanics with 3D Cavities and (Ultra?) High-Q Silicon Nitride Membranes

Gary Steele, Kavli Institute of Nanoscience Delft

NWO

Vibhor Singh Mingyun Yuan UDelft Sal Bosman Shun Yanai Martijn Cohen Yarosl<mark>av Blant</mark>er Mario Gely Gary Steele

http://steelelab.tudelft.nl

erc

Our motivation

Goal/dream

Bring the quantum control of atomic physics to the vibrations of mechanical objects

Mechanical Cat State

quantum superposition of bouncing "up" and bouncing "down" at the same time

Mechanics as a Quantum Platform

Mechanical resonators: Very coherent objects

Q-factor: 128 million (20 mK) Thermal decoherence rate for 20 mK (n_{th} κ): 7 Hz (140 ms)

Motion is also easy to translate into a force: Useful for quantum transduction?

Can we exploit these in a new quantum platform?

Need to go beyond linear optomechanics

(Mechanics) Projects in the group

Microwave Optomechanics in the SteeleLab

Graphene Microwave Optomechanics

Optomechanics with 2D crystals

Optomechanics with SQUIDS and Nanostrings

Large single-photon coupling

Mechanics with 3D Cavities

Macroscopic objects in the ground state

Mechanical Transmons and Metal Drums

Deep / ultra strong coupling regime

Why graphene for optomechanics?

What do we want out of graphene?

Light, Conductive material that shakes with high Q

Multilayer = much higher conductivity (Graphite: Mobility 10⁷)

<u>Light Mass = Stronger Coupling</u>

$$g_0 = \frac{d\omega_c}{dx} x_{\rm zpf}$$

$$x_{\rm zpf} = \sqrt{\frac{\hbar}{2m\omega}}$$

Smaller spring constant Lower frequency Larger coupling

Graphene Microwave Optomechanics

Optomechanics with "decent" C

SQUID Optomechanics

Tunable and strong coupling mediated by flux

100 micron nanowire + 10 mT:

 $g_0 = 6 \text{ MHz}?$

Flux Tunable Cavities

Silicon Nitride Nanowires

Decent Mechanical Q

Despite some redeposition problems?

Gate Tunable Frequency

Electrostatic Parametric Driving

DC Voltage Enhanced Parametric Coupling:

$$F = \frac{dC}{dx} V_{ac} V_{DC} \qquad k = \frac{d^2 C}{dx^2} V_{ac} V_{DC}$$

Thermal Noise Squeezing

"Mechanical Transmon"

Qubit is charge sensitive

$$Q = CV$$

$$\delta Q = \delta C \cdot V_{DC}$$

Large and tunable coupling to phonons

$$g_{\varphi} = 2\pi \times 13.5 \text{ MHz/V}$$

 $\chi_{\varphi} \sim 2\pi \times 2 \text{MHZ at 5V}$

Should reach Phonon Number Resolution Limit!!!

Our Implementation

Ultra-strong coupling regime of transmon to microwave cavity

DC Voltage: USC to phonons?

Cavity

Drum = Only Transmon Island

> SQUID loop to ground

3D optomechanics

Large cooperativity and microkelvin cooling with a 3D optomechanical cavity

Mingyun Yuan

Nature Communications 6, 8491 (2015)

Ingredient #1: mm-sized SiN Membrane

Ingredient #2: 3D Microwave cavity

Pioneered by Schoelkopf Lab for cQED $Q_c = 500 \times 10^6 \ (\kappa = 2\pi \times 10 \text{ Hz})$ Big impact on the Qubit Community

 $T_2 \text{ (qubit)} = 100 \ \mu \text{s}$

Coupling 3D fields to the membrane motion

How to couple 1 mm membrane to 30 mm cavity?

Same trick as with qubits: antennas!

Putting it together

What it looks like

3 micron gap over 1 mm distance

1 mm

Experimental setup

Cavity Resonance

Mechanical Thermal Noise

Q up to 128 Million

Yuan, Cohen, Steele, Appl. Phys. Lett. 107, 263501

Q keeps increasing far below thermal mode temperature

Clamping losses in the (2,1) mode?

Frequencies (kHz): S1 (1,1): 241.9 S2 (1,1): 120.9 S2 (1,2): 192.6 S2 (2,1): 191.7

(1,2) is "dark" to substrate radiation

(tuning fork)

How high can you get at mK? Q = 1 billion?

Q = 40 Million at RT

Q = 98 Million at RT

Christoph Reinhardt, Tina Müller, Alexandre Bourassa, Jack C. Sankey, arxiv:1511.01769

Richard A. Norte, Joao P. Moura, Simon Gröblacher, arxiv:1511.06235

Copenhagen: **Q** = 200 million at RT using phononic sheild for "soft" clamping

Coupling strength: OMIT

How far can we cool?

If mode is at 13 mK:

 $n_i = 2000 \ll C_{max}$

 $C_{max} = 146\ 000$

 $n_f = 0.013$?

T = 87 nK?

What is starting mode temperature?

What is thermal occupation during cooling?

What is our starting mode temperature?

High initial mode temperature: Mechanical vibrations? (Pulse tube is off...)

Sideband cooling

Sideband cooling

Shaking drum with Cavity Photon Noise

Noise of cooling tone "shaking" the resonator (like OMIT)

Role of probe tone now played by sideband noise

$$\frac{S(\omega_0 + \delta\omega)}{\hbar\omega} = 4\eta \left(n_c + \frac{1}{2}\right) + n_{\rm add}$$

Sideband cooling & cavity noise

Sideband cooling & cavity noise

Exciting future?

Better 3D Cavity:

 $f_c \sim 7 \text{ GHz}$ $Q_c \sim 10^5 - 10^{10}$ $\kappa \sim 10 \text{ Hz} - 10 \text{ kHz}$ $N_{max} \sim 10^7 - 10^{10}$

Shrink 3 micron gap + trampolines?: g_0 ~ 30 Hz? Single Photon Cooperativity: Multi Photon Cooperativity: $C_0 \sim 10^3$ $C \sim 10^{12}$

Single photon strong coupling?

Mechanical Dissipation: Phenomenology

Temperature Dependent Q: SiN

Temperature Dependent Q: Metal

Temperature Dependent Q: Graphene

Room temperature: Q = 50

"Negative" nonlinear damping: Graphene

"Negative" nonlinear damping: Metal

"Negative" nonlinear damping: SiN

Mechanical Dissipation: TLS physics?

Mechanical (strain coupled) TLSs

Types of coupling to TLS

Mechanics:

Resonant Coupling is irrelevant

(Superconducting Cavities: dominated by resonant coupling. Q goes up with increasing T...)

How does dispersive coupling dissipate energy?

- Mechanical Displacements dispersively shift energy splitting.
- If mechanical displacements are slow, the TLS ensemble re-equilibrates with bath
- Lag between displacement and re-equilibration gives dissipation
- Lowering T: TLS population shifts to ground state and decouples
- Open question: saturation effects are not expected for non-resonant coupling?

Summary

Microwave optomechanics with a mm-sized membrane and a 3D superconducting cavity

Cooling close to the quantum ground state (limited by generator noise...)

Scaling to Single-Photon Coupling and $C = 10^{12}$?

Trends in mechanical dissipation?

Trends in mechanical dissipation:

Temperature Dependence Saturation? TLS?

Microwave Optomechanics in the SteeleLab

Graphene Microwave Optomechanics

Optomechanics with 2D crystals

Optomechanics with SQUIDS and Nanostrings

Large single-photon coupling

Mechanics with 3D Cavities

Macroscopic objects in the ground state

Mechanical Transmons and Metal Drums

Deep / ultra strong coupling regime

Sound interesting?

PhD + Postdoc Positions available

Contact me if you are interested!

http://steelelab.tudelft.nl

ANTINITI CONTRACTOR