Optomechanical quantum non-demolition measurement of optical field fluctuations

Antonio Pontin

Erice, 1 - 5 August 2016

Cavity opto-mechanics: why?

Unique capability to study the transition between classical and quantum mechanics...

- generation of squeezed light
- observation of the quantum states of a macroscopic mechanical oscillator
- quantum non demolition measurements of field quadratures
- creation of entangled states of light and one or more oscillators

...but also useful sensors

Crucial properties:

low thermal noise is high mechanical Q

high optical quality (cavity Finesse)

Ideal optomechanical QND

Science MAAAS

Observation of Radiation Pressure Shot Noise on a Macroscopic Object T.P. Purdy *et al*, Science **339**, 6121, 801 (2013)

Mechanically detecting and avoiding the quantum fluctuations of a microwave field

J. Suh et al, Science 344, 6189, 1262 (2014)

Two tones drive

ώc

 $\omega_c + \omega_m$

PHYSICAL REVIEW X

Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object

 $\omega_{c} - \omega_{m}$

F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufe Phys. Rev. X 5, 041037 – Published 7 December 2015

Both demonstrate a mechanical squeezed state

Outline

- Development of Micro Mechanical devices
- Experimental setup
- QND measurement of field quadratures

Micro-Mechanical devices

- SOI silicon wafer
- diameter of the central disk ~ 800-400 μm
- highly reflective coating Ta₂O₅/SiO₂
- external "wheel" oscillator for mechanical decoupling
- set of slightly different geometric parameters to cover a frequency range of 150 300 kHz

Understand (and reduce, where possible) every loss mechanism is crucial

Decoupling wheel

Low deformation micro-mirrors

Coating area reduced as much as possible

Succession of torsional and flexural beams to reduced as much as possible the deformation of the coating.

App.Phys.Lett. 101, 071101 (2012)

Latest generation

Experimental characterization

Temperature distribution in cryogenic samples

Cavity parameters

Observed optical losses under optimal conditions as low as

 $L_{\rm cav} = 1.455 \text{ mm}$

Experimental Setup

Double Homodyne Detection

Meter spectrum

Quadrature spectrum

Interference

Signal and meter correlation

QND - Residual amplitude fluctuations

Model comparison

Different quadrature

Opposite side of the reflected filed Ŷs. ϕ_0 $E_{\rm ref}$ ϕ_R E_{E} E_R $\phi_{\rm S}$ ϕ_{S}

Different quadrature

Interference

Ponderomotive squeezing

Signal and meter correlation

QND - Residual amplitude fluctuations

Model comparison

Non-linearity

It is possible to isolate the linear contribution

$$S_{\Delta X \, \text{lin}} = S_{XX} \, (1 - C_{XY \, \text{sqr}})$$

Statistical significance

Minimum $0.921 \pm 0.012 (\sigma)$

Thanks!

Antonio Pontin

INO Istituto Nazionale di Ottica