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ABSTRACT
In this work we report on the optomechani-
cal dynamics of ion chains, whose vibrations
couple with the high-Q mode of an optical
cavity. The dynamics results from the in-
terplay between the long-range Coulomb re-
pulsion and the cavity-induced interactions.
The latter are due to multiple scatterings
of laser photons inside the cavity and be-
come relevant when the laser pump is suf-
ficiently strong to overcome photon decay.
We study the stationary states of ions cou-
pled with a mode of a standing-wave cav-
ity as a function of the cavity and laser pa-
rameters, when the typical length scales of
the two self-organizing processes, Coulomb
crystallization and photon-mediated interac-
tions, are incommensurate. The dynamics
are frustrated and in specific limiting cases
can be cast in terms of the Frenkel-Kontorova
model, which reproduces features of friction
in one dimension. We numerically recover
the sliding and pinned phases. For strong
cavity nonlinearities, they are in general sep-
arated by bistable regions where superlubric
and stick-slip dynamics coexist (Ref. 1). The
cavity, moreover, acts as a thermal reservoir
and can cool the chain vibrations to temper-
atures controlled by the cavity parameters
and by the ions phase (Ref. 2).

We then focus on the regime in which
the length scale are almost commensurate
and investigate how the commensurate-
incommensurate transition is modified by
cavity backaction. We finally discuss how
these features are imprinted in the radiation
emitted by the cavity, which is readily mea-
surable in state-of-the-art setups of cavity
quantum electrodynamics.

SYSTEM MODEL

Taken from Ref. [1].

• No field: ⇒ ion distance d,

• cavity potential with λ/2 periodicity.

Mean photon number in cavity:

n̄ = |η|2/[κ2 + ∆eff({xj})2].

Nonlinear dependence on ion positions

∆eff = ∆c −NU0BN ({xj}).

Order parameter: Bunching parameter BN ({xj})

BN ({xj}) =
∑
j

cos2(kxj)/N.

Hamiltonian of ion chain:
Ĥ = V̂ion + V̂cav,

with nonlinear cavity potential (periodicity λ/2)

Vcav = −~|η|2

κ
tan−1(∆eff({xj})/κ).

⇒ Cavity mediated long range interaction + competing length scales.
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PINNING TRANSITION
Sliding to pinned transition as a symmetry
breaking transition

• symmetric chain, uneven number of
ions,

• central ion at potential maximum.

⇒ Shift of central ion and phonon gap de-
scribe sliding to pinned transition.

Taken from Ref. [1].

CIC TRANSITION
Ground state of almost commensurate ion
chain with backaction
⇒ Continuum limit, replace ion position by
continuous phase θ(n)

1

2
θ′2 − V0(B(ε))

[
sin2(θ) + ε

]
= 0

40 -20 20 40

Kink chain and cavity field characterized by
parameter ε:

B(ε̃) = 1 + ε
(

1− E(−ε−1)/K(−ε−1)
)
.

Mismatch δ⇒ determines ground state
• δ < δc ⇒ commensurate state,
• δ > δc ⇒ kink chain.

OUTLOOK
Cavity output of two colliding kinks:

The next steps:
• determine kink dynamics,
• search for quantum phase transitions.

CAVITY COOLING
Analysis of cavity cooling for ∆c = −8.5κ:

Taken from Ref. [2].

Collective cooling of all phononic modes,
originating from interplay between coherent
photon scattering and cavity losses.

CAVITY OUTPUT
Spectrum at cavity output for C < 0:

Taken from Ref. [1].

(a) sliding phase, (b) pinned phase.
Resonances:
• correspond to vibrational eigenmodes,
• change as C is increased.


